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The attached viewgraphs are from a presentation given to an internal/external review 
panel for the AAA Project Spoke Cavity ED&D Power Coupler Design Review on 
August 2,2001 at LANI,, The presentation gave an overview of the AANADTF 
Superconducting Design work that has been completed to date. This included a 
description of the design presented at the AANADTF Preconceptual Design Review in 
April, 2001 and a discussion of the design philosophy. Simulation results for this design 
were also presented. Finally, recently proposed design changes that impact the power 
coupler requirements were discussed. 
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e What is the ADTF? 

Design Description 8i Philosophy 

Simulation Results 

Recent Proposed Design Changes 

Coupler Power Requirements 
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hy consi er a SC low-energy linac? 

a! for ADTF - Substantially reduce beam interrupts 
rmai stresses in the targetm 

rovides a tages for ~~~~~~~~ 

-Superconducting technology favors cavities with just a few cells. 
~~~~i~~~~ smail nu ber of cells (large ~ ~ ~ ~ ~ ~ f y  acceptance) with 
independent phasing of the cavities produces ability to continue 
operating even with some RF module failures. 

-Larger bore radius allows off-energy or poorly focused beams after 
faults to be transporfed to the target with minimal beam loss. 

-Provides some inherent tolerance against the most common faults. 
Can continue running with failed RF modules, RF cavities, RF 
windows, magnets, and magnet power supplies. 

-More stable operating temperatures means beam trips from 
thermally induced perturbations to cavity RF frequency should be 
greatly reduced. 
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Selection of Design Parameters 

APT linac design was our starting point. 

earn characteristics assumed. 
oduk mechanical layout specifie - iterative 

* Design Goals: 
id [ope Instabiiities 

Cu rren t-Insensitive Focusing Lattice 

Efficient Acceleration 

Reduce Beam Interrupts - design inherent insensitivity 

chieve G 

a Selection of accelerating gradients, 

Parameters are probably not yet optimized. 

synchronous phases, and beam focusing 



ADTF Superconducting Linac Design 
(April ADTF Review) 

350 MHz 700 MHz 
Injector& 2-gap 3-gap 3-WP 5-cel I el I i ptical 5-eel I el I i pt ical 
35QMHz spoke spoke spoke 
LEDA RFQ p=0.175 p=0.20 p=0.34 

p=0.48 p=0.64 

t t t t Target t i  
I I I I ' Beam Transport 

600 MeV Line (HEBT) 6.7 MeV 14 MeV 44 MeV 109 MeV 211 MeV 
13.3 mA 
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Cayornodule and RF Architectures 

\ 
\ 

CRYDMODUE P 

S ~ m n d u d i n g  ' h l a U  E m # d  Guny CRYMODULEXI CRYOMOWE .1p 
Solenoid 

3cnWa/RF Gensntoi 

Warm Quadrupole Doublst 
\ 
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6-Cavity Spoke Cryomodule Final Assembly 

Vacuum Tank with 
Preinstalled Shields Thermosyphon Tank 

and MLI (2X) 

Access Head with 

Cold Mass Assembly 
On Strong-back End Cap 

Preinstalled Shields 
and-MLI (access ports not shown) 

sad 
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SC solenoids save power and rovide str ng focusing 
with fewer magnets than with quadrupole systems. 

0 SC solenoids can be instatted in the c ostats to provide a 
periodic focusing lattice. 

Persistence-mode operation allows power supply repair 

during linac operation. 

Solenoids cqn provide a shorter focusing period resulting in 
stronger net focusing at low beam velocities. SC solenoids 
produce higher fields. 

0 The superconducting design reduces the number of focusing 
magnets by a factor of 3. 
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Superconducting ADTF Design 

Maximum Beam Size vs. Energy 
LEDA RFQ Beam 

Beam loss observed for 100 mA beam 

500  mh 

13.3 mA 

O m A  
I I I I I 1 J 

100 200 300 400 500 600 700 

Beam Energy ( MeV ) 
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Simulation - Fault I Failure Study Results 

a Single-magnet failures in ideal linac appear tolerable. 

a tipee sequential magnet failures ( >1 resuIt in large beam 
loss. 

Loss of both magnets in a cryornodule wiil cause 
machine downtime. 

Uncompensated single-cavity or RF module failures 
anywhere in the linac result in high beam loss. 

Compensation for loss of a cavity or loss of an RF 
module is required and possible. 

Example - Shift downstream cavity operating phases and 

increase amplitudes to restore beam energy. 
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Recent Desi n Chan 

= increas ~ k e  cavi 

to cm. 
Only 5% in cavity eHicie€?cy= 

0 Increase allowed rnaxirnu accelerating g ts in spoke 
cavities by 50% from EoT=5 MWm to 7.5 MVim. 

Jusfified by recenf cavity fesfs. 

Reduces I overall linac length. 

Increase maximum allowed Bpk= 700 Gauss for f3=0.48 section. 

Modify design operating parameters to eliminate beam losses at 
high beam currents (I00 mA). 

Preliminary results - modified phase and amplitude ramps 

Simulation results indicate improved beam dynamics. 
performance. 



Revised ADTF Superconducting Linac Design 

350 MHm 700 MHz 

6.7 MeV 
I Beam Transport I I 

43 MeV 112MeV 211 MeV 600 MeV Line (HEBT) 
\ -  - 1 

- 

13.3 mA 



Transit-Time Factor vs Beam Energy 
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ADTF SC Design 6 

Beta=O. 175 

Beta=0.48 

i 
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Synchronous Phase vs Beam Energy 

ADTF SC Design 6 
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Accelerating Gradient vs Beam Energy 

ADTF SC Design 6 

Beta=O.34 Beta*. I75 
Beta=O.48 

I , I . I . I , I  l * l . l , l , l , l  I .  
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E,,vs Beam Energy 
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AQTF SC Design 6 

Be?a=0.34 

Beta=0.1?5 
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Revised ADTF SC Linac Parameters 

No. of Cavities I R F  Generator 1 2 2 
No .  of R F  Generators I Section 8 0  1 8  16 

Magnet  Type S C  Solenoid SC Solenoid S C  Solenoid 
Magnet  Field I Gradient 4 2 3  - 5.68 T 
Average R E  Gradient 

Total Length Sections 1 - 3 ( m )  183.928 

1.85 - 3.53 T 3.82 - 5.57 T 

0 .402 1.658 . 1.909 

3 

31 145 
R T  Quad Doublet 

4 .85 - 6.05 Tlm 

2.030 1.495 
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